+ +
0 0
AH .
AG, =QX X, +RT(X,InX, +X,InX,)
é‘Hmix ~ ~ - A v ]
— TASm]_x a‘}'_Imi)( - TASmix
- —TASLix -
‘G‘Gmix
A AGmix B A B
(a) 2 <O, highT (b)Q <O, low T
AHmix
+ +
":"Hmix AG

—TAS

'mix

() >0, highT (d)Q=>0,lowT

The effect of AH_;, and T on AG,,.

This is shown in Fig. 1.15 for different values of Q2 and temperature. For
exothermic solutions AH,;, <0 and mixing results in a free energy decrease
at all temperatures (Fig. 1.15a and b). When AH_;, > 0, however, the situation
is more complicated. At high temperatures TAS . is greater than AH,;, for all
compositions and the free energy curve has a positive curvature at all points
(Fig. 1.15¢). At low temperatures, on the other hand, TAS;, is smaller and
AG i develops a negative curvature in the middle (Fig. 1.15d).



Concept of the chemical potential and the activity of elements

Gibb’s free energy, G is function of temperature, T, pressure, P and amount of

elements, n,, ng

G=G(T,P,n,, n;...... )
At particular temperature and pressure, partial derivative gives

dG = a—(!df.'ﬂ + a—GdnB
n, dny

= U, dn, + Updng

i"}l_{":‘,u_ﬁl is the chemical potential of element A. It measures the change in
n,, free energy because of very minute change of element A.
_dG — is the chemical potential of element B. It measures the change in
dny "7 free energy because of very minute change of element B.

~ It should be noted here that the change should be so minute that there should
not be any change in concentration because the chemical potential is a

concentration dependent parameter.



~ Let us consider an alloy of total x moles where it has x, mole of A and x; mole of B.

» Note that xis much higher than 1 mole.

» Now suppose we add small amounts of A and B in the system, keeping the ratio of
X,:Xg the same, so that there is no change in overall composition.

~ So if we add four atoms of A, then we need to add six atoms of B to keep the overall
composition fixed. Following this manner, we can keep on adding A and B and will
reach to the situation when X, mole of A and X; mole of B are added and total added

amountis X, + X; = 1.

~ Since previously we have considered that the total free energy of 1 mole of alloy
after mixing is G, then we can write

G=u,X,+HyX, wilbeproven alittle bit later

~ Previously, we derived

G=X,G,+X,G,+ QXaXs +RT[X ,InX, +X,InX,]
9 2
Further, we can write X ;X =X X, +X,X; HWorQ:Prove

G=X,(G, +QX2 +RTIn X, )+ X,(G, + QX2+ RTIn X ,)



Further, comparing the expressions for free energy, we can write
U, =G, +QXEZ+RTInX,
=G, +Q(1-Xa)2+RTInX ,

Uy =Gy +Q(1-XB)2 +RTIn X,

In terms of activity

1, =G, +RTIna,

Uy, =G, +RTIna,

So the relations between the chemical potential and activity are

RTIna, =Q(1-Xa)2+RTInX,

RTIna, =£(1-Xs8)2+RTIn X,



\Ce
Cay /| 2
o . / &
$ 1\ /
3 £ o g
g b H“a_q___ G _—— ¢
s e
E l’..-;-"‘""'.‘f 4:.
= Ha T ;E}" d
0 Xa 1

Composition, Xg
~ Activities and chemical potentials are determined from a free energy curve after
taking a slope, as explained in the figure.

~ If we are interested to determine the activities or chemical potentials in a binary
system A-B, let say atXE. , we need to take a slope on the free energy curve at the free
energy, 7* and extend it to pure element, A (Xg=0) and pure element B (Xz=1).

~ The point at which it hits N; = 0, the value corresponds to the chemical potential of
element A (K3 ).

» From previous slide, we can write— RT Ina, =G, —ﬁ;

~ So, once the chemical potential is known, the activity of the element can be
calculated using the above equation, as explained in the graph.



Free energy, G
‘RTI““& }m
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';E* 'HTI“HB

Composition, Xg

~ It can be proved that, by taking slope and then extending to X;=0 and X;=1, we
can find the chemical potentials. We can write

G =u,+ab
» Further, we can write
ab cd

X, 1
ab=X ,cd = XH[,”B _z”.:.)

» That becomes

G =1, X, +1u,X,



Concept of chemical potential and activity

Further, we can write

™y
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Inf 24 |=—(1-X n B
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=X exp[ } VX
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~ 7; are the activity coefficient of element.i.

» In an ideal solution,()=0 and a=X;

» In a non ideal solution, activity coefficient indicates the deviation from
the ideal line.



Activity of A, ag

Activity of A, a,

Ya= EKD[?—T{I— X;, ]Z}

)
| Ve :EEP{E{I_XH}E}

Composition, Xg

Composition, Xg

In the case of positive enthalpy of mixing, activity deviates positively and in
the case of negative enthalpy of mixing activity deviates negatively from the

ideal mixing line.

X,—0,7, — exp(2/RT)
X, —0, 7, — exp(Q/RT)

Henry’s law: activilty of elements is
more or less the constant in a very

dilute solution.

X,—»Ly, —1
X,—=Ly,—1

Rault’'s law: activity is equal to the
mole fraction near the mole fraction

of 1



Equilibrium conditions between different phases

As explained previously, while discussing the phase diagrams, we have shown that at
certain conditions two phases, such as solid and liquid or two solid phases o and
can stay together.

This can be explained with respect to chemical potential of elements. For the sake of
explanation let us consider that there are two phases o and [ which are staying
together.

If we remove dn, of element B from the  phase and add them to « phase, then the
change in free energy of the o and [} phases will be

dG” = uzdn,
dG” = —uldn,

So the total free energy change of the system will be
dG = i dn, — i dn, = (,u}_f —;ff)dnﬁ

However, we know that in equilibrium condition dG = 0. That means the chemical
potential of element B in both the phases should be the same.

That further means that even if a small amount of material is transferred from the [ to
the o phase, there will be no difference in equilibrium as long as the chemical
potential of elements are the same in both the phases.



~ Previously, we have shown that the system will not be in equilibrium that is it will go
through irreversible transformation if dG < 0. That means

(411;; - ;f,’f]dnﬂ <0

~ This indicates that the chemical potential of B in the « phase is less then the
chemical potential of the same element in the [} phase.

~ So to reach to the equilibrium system will transfer B from the [ phase to the «
phase.

»~ Now we understand, why both solid and liquid phases can stay together in certaln
composition range. It can be understood from the common tangent betweenX and XL
chemical potential of any of the elements are the same in both the phases.

Ga j|¢:1: Temperature, T,

o
g
b

LS




Gibb’s Duhem relation and the driving force for diffusion

a
>

Free energy, G
-:l- = -

Composition, Xg

~ It can be seen that when we move from alloy P to Q that is to a B-rich alloy, the
chemical potential of B increases and the chemical potential of A decreases.

~ At any point P or Q, we can write
Cdu, duy
X X

B A

So we can write

X, du, +Xpdity =0  Thisis called Gibb’s-Duhem relation



Another useful relation can be derived from this:

_y dut, _y du,
Yax, "dx,

By dividing dXg
Further, from
Up =Gy +RTIna, =G, +RTIny, X,

duy, RT dlna,
dX, X,dhnX,

“,=G,+Rl'nha, =G, +RT'Iny, X,

di,  RT dlna,
dX, X,dmnX,

since X, +X,=1

dina, dlna,
dinX, dinX,

This is very useful equation in diffusion studies.



Regular Solutions

In solid solution model it has been assumed that AH,;; = 0; but in practice mixing is
endothermic or exothermic. Therefore the model for ideal solution must be
extended such that it includes AH ,;, term by using the quasi-chemical approach.

In quasi-chemical model AHy, is only due to the bond energies btw adjacent atoms.

(A (B A (BB A
O———(——)——®
A-A | A-B
A A (B A (B (B (]
OO OROROR0O=0=0
1. A—A bonds each with an energy ¢, ,, NN /**\B_Bf\ AL A
2. B—B bonds each with an energy eg;, (Bj A)—8)— )4 —4—4) k@
3. A—B bonds each with an energy ¢ ;.
) (BB A (B A AN (T
OmOaOaOn0nOmOm0)
O B A BB A A (]
OmOaOaOn0nOmOn0,
O A R A R R R
OaOROnOnOnOnOm0




Regular Solutions

1. A—A bonds each with an energy ¢,,,
2. B—B bonds each with an energy e,
3. A—B bonds each with an energy ¢ ;.

AH_, =Py As —> E= Py &pp + Ppppy + Pypoap

Ae is the difference btw A-B bond energy and the average
As =g, —1(e,, + ) .
AB- 23544 T TBB of A-A and B-B bond energies

If Ae=0 and AH_;, =0 and the solution is ideal, atoms arrange randomly,

and the entropy of mixing, AS,. =-R[X,InX,+X,InX,]. In such solutions;

PAE = anXAXH bonds mol™ ; where N is Avogadro’s Number, and z iz the number of bonds/atom

If Ae<0 the atoms in the solution prefer to be surrounded by atoms of the opposite type,
Which result in increase in P,g



Regular Solutions

» If Ae=0 and AH,;, =0 and the solution is ideal, atoms arrange randomly,
and the entropy of mixing, AS,. =-R[X,InX,+X,InX,]. In such solutions;

iy

PAE = NH;;XAXE bonds mol™ ; where N is Avogadro’s Number, and z iz the number of bonds/atom

» If Ae<0 the atoms in the solution prefer to be surrounded by atoms of the opposite type,
Which result in increase in P,g

> If Ae>0 P,; will tend to be less than in random solution.

* However, Ag in not too different than 0; therefore P, = N,zX,X; bonds mol™
is a good approx. in which case AH_, =QX,X; where Q=N _zAg



Real Solutions

As already indicated, in alloys where the enthalpy of mixing is not zero
(Ae & Q # 0) the assumption that a random arrangement of atoms is the
equilibrium, or most stable arrangement is not true, and the calculated value
for AG_,;, will not give the minimum free energy.

AG, . =QX X, +RT(X, InX,+X,InX,)
AH k _TAS ’

: mix

mix

]
(1= N[,Zﬂf Ae =¢€, — ;(EM +&pp)

The actual arrangement
of atoms will be a compromise that gives the lowest internal energy consis-
tent with sufficient entropy, or randomness, to achieve the minimum free
energy.



In systems with £ < 0 the internal energy of the system is reduced by
increasing the number of A—B bonds, i.e. by ordering the atoms as shown in
Fig. If £ > 0 the internal energy can be reduced by increasing the num-
ber of A—A and B—DB bonds, i.e. by the clustering of the atoms into A-rich
and B-rich groups
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(a) (b) (c)

Schematic representation of solid solutions: (a) ordered substitutional, (b) clustering, (c)
random interstitial.



In systems where there is a size difference between the atoms the quasi-
chemical model will underestimate the change in internal energy on mix-
ing since no account is taken of the elastic strain fields which introduce a
strain energy term into AH_ ;.. When the size difference is large this effect
can dominate over the chemical term.

When the size difference between the atoms is very large then interstitial
solid solutions are energetically most favourable,

In systems where there is strong chemical bonding between the atoms
there is a tendency for the formation of intermetallic phases. These are dis-
tinct from solutions based on the pure components since they have a differ-
ent crystal structure and may also be highly ordered. Intermediate phases
and ordered phases are discussed further in the next two sections.



Ordered Phases

Assume atoms in a substitutional solid are completely randomly arranged.
In such solutions In such solutions P,; the number of A-B bonds is given ;

P,, =N zX,X, bonds mol™

If 2<0 and the number of A-B bonds are greater than this, the solution is said to contain
Short Range Order (SRO). The degree of SRO is quantified such as

P,;, — P,z(random)

P,z(max)— P,,(random)

; where P,;(max) and P,z(random) refers to maximum possible #of bonds and the #of bonds
for a random solution, respectively.



Ordered Phases

(a) Random A-B solution with a total of 100 atoms and X, = X;=0.5, P,; ~ 100, § = 0. (b) Same
alloy with short-range order P,; = 132, P, z(max) ~ 200, S = (132 -100)/(200 — 100) = 0.32.

In P,z(max) case —> long-range order




Example

Cu-Au alloy, both FCC and totally soluble in eachother.
At high T, Cu or Au atoms can occupy any lattice site randomly.

Atlow T, (and with X_,=0,5) they form an ordered structure in which Au
and Cu are arranged in alternate layers (CuAu superlattice). CusAu is
another superlattice.




The most common ordered lattices in some other systems are illustrated.

e) @cd OMg

Critical T for loss of LRO increases with increasing €, or AH,_ ... In many
systems LRO is stable up to melting T



Intermediate Phases

Often the contiguration of atoms that has the minimum free energy after
mixing does not have the same crystal structure as either of the pure
components. In such cases the new structure is known as an intermediate
phase.

Intermediate phases are often based on an ideal atom ratio that results in
a minimum Gibbs free energy. For compositions that deviate from the ideal,
the free energy is higher giving a characteristic ‘U’ shape to the G curve, as

G A G 'y
Gp
GA L
I
A 4 B A X B
Ideal B
(a) composition (b)

Free energy curves for intermediate phases: (a) for an intermetallic compound with a very
narrow stability range, (b) for an intermediate phase with a wide stability range.



Intermediate Phases

The structure of intermediate phase is determined by 3 main factors;
- Atomic size

- Valency

- Electronegativity

When the atoms differ in size about 1.1 - 1.6 it is possible to fill space most
efficiently . -‘

The structure of MgCu, (A Laves phase). (From J.H. Wernick, chapter 5 in Physical Metallurgy,
2nd edn., RW. Cahn (Ed.) North Holland, 1974.)



Equilibrium in Heterogeneous Systems

Usually A and B dont have the same crystal structure. Therefore 2 separate
free energy curves must be drawn.

G A
f c
a b
G* GP
A X B
(b)

(a) The molar free energy curve for the a phase, (b) Molar free energy curves for a and f
phases.



Equilibrium in Heterogeneous Systems

Suppose an alloy consist of 2 phases; o and 3 and their molar free energies
are G* and GP, relatively.

(a) Alloy X" has a free energy G, as a mixture of a, + f#,. (b) At equilibrium, alloy X® has a mini-
mum free energy G, when it is a mixture of a, + f..



Equilibrium in Heterogeneous Systems

Equilibrium btw 2 phases requires the common tangents to each G curve.
Thus, each component have to have same chemical potential in the 2

hases. i =
PRASES- pa— B, pb=ps

u,=G,+RTIna, .

a . -
remember — ﬂA - l?A, aB o l?g
Uy =G, +RT Ina,



Thermodynamics and phase diagrams

We need to consider three situations for different kinds of enthalpy of mixing

Situation 1: Enthalpy of mixing is zero G=0G. +AG
0

mix

— GD _T‘&Smiﬁ'
At low temperature, T \ \"
__G .-‘,-" e —-.___“I‘ r'f__,.-"' . --.-‘ﬂ"h__l
X, GatXeGe - ) =X,G, + )?_HQH’JF"RT_[XA InX,+Xpln X_BJ»”
G“\ ' TAS i /
‘f; —_ G :T_____,_f-f-””"x » With the increase in temperature, -TAS
o will become even more negative.
E At high temperature, T,
2
- 6 .-G »The values of G, and Gy also will
x‘ Gg+13__5--—'_- |
G, = el / decrease.
Gpl--"7" : /
H‘\ . T As ~ Following the slope G, might change
o since G, and Gg will change differently with
\ ! temperature.
-\EH"-\--._\_ -\_9__+ B _'_‘_,__,-'-""'Ff-
0 1

Composition, X g



Situation 2: Enthalpy of mixing is negative

Free energy change, G

Gosﬁ_AG_A*xs.ga women =Y

At low temperature, T

At high temperature, T,
G
GO-XAG‘A_*F?‘?‘- -

-

AH,,,k/ o ,/'/ /

Composition, X g 1
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G, N(Z?_'atwe -TAS,,,

mix

» Here both AH_,, and -TAS_,, are negative.

~ With increasing temperature G will become
even more negative.

~ Note that here also G, may change the slope
because of change of G, and Gg differently with
temperature.



Situation 3: Enthalpy of mixing is positive

Free energy change, G
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G.* XaCa* X.q_u
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Positive TAS:

AHmix mix
~ AH,,,. is positive but -TAS,,, is negative. At lower
temperature, in a certain mole fraction range the
absolute value of AH_, could be higher than TAS  so
that G goes above the G, line.

~ However, close to G, and Gg, G will always be lower
than G, since AH,, has a finite slope, whereas AS
has infinite slope. The composition range, where G is
higher than G, will depend on the temperature i.e.
-TAS,,,,
~ Because of this shape of the G, we see miscibility
gap in certain phase diagrams.

~ At higher temperature, when the absolute value of
TAS,,,. will be higher than AH_,, at all compositions, G
will be always lower than G, .



Tem perature,T,
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. ~ With decreasing temperature, free

cct : energy for the solid, G® and liquid phase Gt
: f will change differently with different rates
of change of G, and Gg;.
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~ At higher temperature, GL<GS (Fig. a), so

Composition, Xg ' Composition, Xg that the liquid phase is stable. At lower
Gk [e]  Temperature.T; ot @] Tempersturets temperature G5<G' (Fig. e) so that the solid
& J . phase is stable.
N N 7

~ In between, G and Gl intersects to find
¢ the situation as explained in Fig. c.

Froe energy, G
o
o
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-=eeeef
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Fros anengy, G
)
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; | » Common tangent drawn gives the
e Compesttion X composition range where both solid and
liquid phases can be found together.

Tie) Temperature, T, hi_l _________________ L I?T:%.--. :

o G /“‘% o ettt u  » That means, if the average composition

o .G . ] — . o . . . .

. ~—— " | i ..., 18 Xg as shown in the phase diagram, it will

s “N_ g - . w~_ |, have the solid phase with composition of

Sl T— | A A S n X% and the liquid phase with composition
-l Sad,8 | of Xg-. Phase fractions can be found with

Compositon Xs o estion b the help of Lever rule.

~ Both the liquid and solid phases can stay together because overall free energy will be
less than the free energy when considered separately.

~ Further clarifications will be given once the concept of chemical potential of elements
is introduced.
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~ This kind of phase diagram is found
when the system has positive enthalpy
of mixing, especially for the solid phase.

~ Because of the shape of the G° at low
temperature as shown in Fig. e, it is
possible to draw a common tangent,
which indicates that the solid phase with
the average composition between o, and
o,, will have a phase separation. This
corresponds to the miscibility gap in the
phase diagram.

~ It may also come to the situation, as it
is shown in Fig. ¢, Gt and GS intersects
twice. In that case these will be two
separate regions where both the solid
and liquid phases coexist.
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Componition, Xy Componitan, Xy

~ In this system, there are two solid
state phases and one liquid phase. So
three free energy curves should be
considered.

~ At certain temperature, T, one
common tangent can be drawn, which
will touch all the free energy curves.

~ This indicates that all the three
phases at a particular composition E,
as shown in Fig. d and f can coexist.
This is called eutectic point.
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B phase is an intermetallic compound that is an ordered phase
with very narrow homogeneity range.
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Sometimes 3 phase can be found with wider homogeneity range.



